Metadata Title: Chain of LoRA: Efficient Fine-tuning of Language Models via Residual Learning Authors: [[Wenhan Xia]], [[Chengwei Qin]], [[Elad Hazan]] Date: [[2024-01-08]] Ta…
理解深度学习: 第二章 监督学习
监督学习模型就是将一个或多个输入转化为一个或多个输出的方式。比如,我们可以将某部二手丰田普锐斯的车龄和行驶里程作为输入,预估的车辆价格则是输出。 这个模型其实只是个数学公式;当我们把输入放入这个公式进行计算,我们得到的结果就是所谓的“推理”。这个公式还包含一些参数。改变参数值会改变计算的结果;这个公式其实描述了输入和输出之间所有可能关系的“家族”,…
理解深度学习: 第一章 介绍
原书地址:https://udlbook.github.io/udlbook/ 人工智能(AI)旨在打造模仿智能行为的系统。它覆盖了众多方法,涵盖了基于逻辑、搜索和概率推理的技术。机器学习是 AI 的一个分支,它通过对观测数据进行数学模型拟合来学习决策制定。这个领域近年来迅猛发展,现在几乎(虽不完全准确)与 AI 同义。 深度神经网络是一类机器学习…
人脸识别和神经风格迁移介绍
终于来到Andrew Ng教授深度学习专项课程CNN课程的的最后一节课的笔记博客了,这也是这门课程专栏的最后一篇博文了,本篇主要内容主要是CNN在人脸识别和神经风格迁移中的应用。那我们开始吧! 人脸识别 人脸识别简介 什么是人脸识别?我想大家应该都使用过人脸识别的系统,比如一些办公楼或者小区的人脸识别系统,系统可以识别到一个活生生的人脸(相比于照片…
浅谈CNN中的检测算法
图像处理算法发展迅速,卷积神经网络扮演越来越重要的角色。本文基于Andrew Ng 教授的深度学习专项课程第四门课程的第三周内容来详细介绍卷积神经网络(CNN)中的主要检测算法,包括对象识别定位、如何提升检测精度,YOLO算法,语义分割等概念。 对象的识别与定位 计算机视觉的核心挑战之一是如何使机器能够“看到”和“理解”图像中的内容。不同于人类直观…
深度卷积神经网络案例研究
在深度学习快速发展的时代,各种创新型的神经网络架构层出不穷。要想跟着时代的发展,对于这些案例的研究是很有必要的。本篇博客将基于Andrew Ng教授的深度学习专项课程第四门课程的第二周内容来针对卷积神经网络的一些案例进行介绍。 案例研究的意义 首先思考一个问题,我们为什么需要研究这些案例呢? 首先,这些案例承载了前人在网络设计中积累的知识和经验。通…
卷积神经网络入门
卷积神经网络(Convolutional Neural Network,简称CNN)是一类用于图像处理的深度神经网络。CNN借鉴生物视觉系统的结构,使用卷积运算提取图像的空间特征,再结合全连接层进行分类或预测。由于卷积运算的引入,CNN在图像处理方面表现卓越,被广泛应用于图像分类、目标检测、语义分割等任务中。本篇博客将基于Andrew Ng教授的深度学习专项课程第四门课程的第一周内容来针对卷积神经网络的基础知识进行简单的介绍。
Transformer 网络解读
终于到序列模型课程最后一周的内容了,本篇博客依然是基于Andrew Ng的深度学习专项课程的序列模型来编写的,本篇内容不会很多,主要就是Transformer网络相关的知识点,Transformer网络是一种基于注意力机制的神经网络架构,被广泛应用于自然语言处理领域,尤其是机器翻译任务中。本文将详细介绍Transformer网络的关键概念和工作原理…
揭秘序列到序列模型:从机器翻译到语音识别
Sequence to Sequence Model是NLP领域非常核心的模型,这类模型使用编码器-解码器的结构,可以实现输入和输出不相同长度序列之间的变换。本篇博客将全面介绍序列到序列模型的基础概念、工作机制,尤其是其中注意力机制的技术更是当前大模型技术的根基之一,最后也会捎带介绍一些序列模型在语音处理的应用。本文也是基于Andrew Ng教授D…
浅谈 Word Embeddings
词嵌入(Word Embeddings)是自然语言处理(NLP)和深度学习中的一个核心概念。它通过将词汇映射到连续的向量空间,为计算机提供了一种直观和强大的方式来理解语言。本篇博客基于Andrew Ng教授的Deep Learning 专项课程中序列模型这门课第二周的内容,那我们开始吧! Word Embeddings 介绍 词嵌入的概念 词嵌入是…