Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts 通过语言家族专家混合高效普及50种语言的医疗大语言模型 将医疗大语言模型适配到本地语言中可以降低获取医疗服务的障碍,但数据稀缺仍然是一个重大挑战,特别是对于…
Baichuan-Omni Technical Report Baichuan-Omni 技术报告 GPT-4o 在多模态能力和交互体验方面的显著表现,使其在实际应用中扮演了重要角色,但目前尚无高性能的开源替代方案。本文中,我们推出了 Baichuan-Omni,这是首个开源的 7B 多模态大语言模型 (MLLM),能够同时处理和分析图像、视频、音…
CMU10-414/714 Deep Learning Systems 第二次作业hw1解析
每周AI论文速递(241007-241011)
每周AI论文速递(240930-241004)
每周AI论文速递(240923-240927)
CMU10-414/714 Deep Learning Systems 第一次作业解析
每周AI论文速递(240916-240920)
每周AI论文速递(240909-240913)
每周AI论文速递(240902-240906)
本周讲解dlsyscourse 的第二次作业,也就是hw1的部分。上周的内容主要是个warm up,熟悉一下环境以及一些简单的代码,本周要开始实现一个基础的自动微分框架needle。同样本周作业也放到了 https://github.com/careywyr/dlsyscourse ,colab的题目也翻译成了中文方便阅读,代码里面也移除了关于mu…
Addition is All You Need for Energy-efficient Language Models 加法即所需:高效能语言模型 大型神经网络在浮点张量乘法上耗费了大量计算资源。在本研究中,我们发现浮点乘法器可以通过一个高精度的整数加法器来近似实现。我们提出了线性复杂度乘法 L-Mul 算法,该算法通过整数加法操作来近似浮点数…
Emu3: Next-Token Prediction is All You Need Emu3: 下一个 Token 预测的全部 尽管下一个 Token 预测被视为通向人工通用智能的有力途径,但在多模态任务中,它一直难以超越扩散模型(如 Stable Diffusion)和组合方法(如 CLIP 与大语言模型的结合)。本文中,我们推出了 Emu3…
Imagine yourself: Tuning-Free Personalized Image Generation 想象你自己:无调优个性化图像生成 扩散模型在多种图像生成任务中表现出色。本研究中,我们推出了“想象你自己”,一种无需调优的个性化图像生成模型。与依赖调优的传统方法不同,“想象你自己”允许所有用户共享同一框架,无需个体调整。此前,模…
最近要开始刷CMU的 10-414/714: Deep Learning Systems 这门课了,之前其实就看了个开头,因为自己就是希望未来可以多研究研究关于System方面的内容,因此这门课可以说是必须刷的了。目前只看了前面5节的内容,已经足以做第一次的作业了。因此开了个仓库用来管理作业了,官方的是每次作业都单独一个库,自己学的话还是放一块比较…
InstantDrag: Improving Interactivity in Drag-based Image Editing InstantDrag: 提升基于拖拽的图像编辑中的交互性 基于拖拽的图像编辑因其交互性和精确性而最近受到青睐。然而,尽管文本到图像模型能够在几秒钟内生成样本,但拖拽编辑仍然落后,这是由于在保持图像内容的同时准确反映用户…
How Do Your Code LLMs Perform? Empowering Code Instruction Tuning with High-Quality Data 你的代码大语言模型表现如何?利用高质量数据赋能代码指令微调 最近,研究如何构建更好的代码指令微调数据集的兴趣逐渐增加。然而,我们观察到使用这些数据集训练的代码模型在Huma…
SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding SciLitLLM: 如何适应大语言模型以理解科学文献 科学文献理解对于提取目标信息和获得洞察力至关重要,从而显著推进科学发现。尽管大语言模型 (LLMs) 取得了显著的成功,但它们在理解科学文献方面面临挑战,主…